Appendix A – Runway Length Data Tables

Airplane Weight Category Maximum Certificated Takeoff Weight (MTOW)			Design Approach	Location of Design Guidelines
12,500 pounds (5,670 kg)	Approach Speeds less than		Family grouping of	Chapter 2;
or less	30 knots		small airplanes	Paragraph 203
	Approach Speeds of at least		Family grouping of	Chapter 2;
	30 knots but less than 50		small airplanes	Paragraph 204
	knots		Ĩ	
	Approach	With	Family grouping of	Chapter 2;
	Speeds of	Less than 10	small airplanes	Paragraph 205
	50 knots or	Passengers	_	Figure 2-1
	more	With	Family grouping of	Chapter 2;
		10 or more	small airplanes	Paragraph 205
		Passengers	_	Figure 2-2
Over 12,500 pounds (5,670 kg) but less than 60,000			Family grouping of large	Chapter 3;
pounds (27,200 kg)			airplanes	Figures 3-1 or 3-2 1
				and Tables 3-1 or 3-2
60.000 pounds (27.200 kg) or more or Regional Jets ²			Individual large airplane	Chapter 4; Airplane
				Manufacturer Websites
				(Appendix 1)

 Table 1-1. Airplane Weight Categorization for Runway Length Requirements

Note¹: When the design airplane's APM shows a longer runway length than what is shown in figure 3-2, use the airplane manufacturer's APM. However, users of an APM are to adhere to the design guidelines found in Chapter 4.

Note²: All regional jets regardless of their MTOW are assigned to the 60,000 pounds (27,200 kg) or more weight category.

PRIMARY RUNWAYS. The majority of airports provide a single primary runway. Airport authorities, 103. in certain cases, require two or more primary runways as a means of achieving specific airport operational objectives. The most common operational objectives are to (1) better manage the existing traffic volume that exceed the capacity capabilities of the existing primary runway, (2) accommodate forecasted growth that will exceed the current capacity capabilities of the existing primary runway, and (3) mitigate noise impacts associated with the existing primary runway. Additional primary runways for capacity justification are parallel to and equal in length to the existing primary runway, unless they are intended for smaller airplanes. Refer to AC 150/5060-5, Airport Capacity and Delay, for additional discussion on runway usage for capacity gains. Another common practice is to assign individual primary runways to different airplane classes, such as, separating general aviation from nongeneral aviation customers, as a means to increase the airport's efficiency. The design objective for the main primary runway is to provide a runway length for all airplanes that will regularly use it without causing operational weight restrictions. For Federally funded projects, the criterion for substantial use applies (see paragraph 102a(8).) The design objective for additional primary runways is shown in table 1-2. The table takes into account the separation of airplane classes into distinct airplane groups to achieve greater airport utilization. Procedurally, follow the guidelines found in subparagraph 102(b) for determining recommended runway lengths for primary runways, and, for additional primary runways, apply table 1-2.

104. CROSSWIND RUNWAYS. The design objective to orient primary runways to capture 95 percent of the crosswind component perpendicular to the runway centerline for any airplane forecast to use the airport is not always achievable. In cases where this cannot be done, a crosswind runway is recommended to achieve the design standard provided in AC 150/5300-13, *Airport Design*, for allowable crosswind components according to airplane design groups. Even when the 95-percentage crosswind coverage standard is achieved for the design airplane or airplane design group, cases arise where certain airplanes with lower crosswind capabilities are unable to utilize the primary runway. For airplanes with lesser crosswind capabilities, a crosswind runway may be built, provided there is regular usage. For Federally funded projects, the criterion for substantial use applies to the airplane used as the design airplane needing the crosswind runway (see paragraph 102a(8).) The design objective for the length of crosswind runways is shown in table 1-3. Procedurally, follow the guidelines found in subparagraph 102(b) for determining recommended runway lengths for crosswind runways, and, for additional crosswind runways, apply table 1-3.

Figure 3-1. 75 Percent of Fleet at 60 or 90 Percent Useful Load

Mean Daily Maximum Temperature of Hottest Month of the Year in Degrees Fahrenheit

75 percent of feet at 60 percent useful load

75 percent of feet at 90 percent useful load

Manufacturer	Model	
Aerospatiale	Sn-601 Corvette	
Bae	125-700	
Beech Jet	400A	
Beech Jet	Premier I	
Beech Jet	2000 Starship	
Bombardier	Challenger 300	
Cessna	500 Citation/501Citation Sp	
Cessna	Citation I/II/III	
Cessna	525A Citation II (CJ-2)	
Cessna	550 Citation Bravo	
Cessna	550 Citation II	
Cessna	551 Citation II/Special	
Cessna	552 Citation	
Cessna	560 Citation Encore	
Cessna	560/560 XL Citation Excel	
Cessna	560 Citation V Ultra	
Cessna	650 Citation VII	
Cessna	680 Citation Sovereign	

Manufacturer	Model	
Dassault	Falcon 10	
Dassault	Falcon 20	
Dassault	Falcon 50/50 EX	
Dassault	Falcon 900/900B	
Israel Aircraft Industries (IAI)	Jet Commander 1121	
IAI	Westwind 1123/1124	
Learjet	20 Series	
Learjet	31/31A/31A ER	
Learjet	35/35A/36/36A	
Learjet	40/45	
Mitsubishi	Mu-300 Diamond	
Raytheon	390 Premier	
Raytheon Hawker	400/400 XP	
Raytheon Hawker	600	
Sabreliner	40/60	
Sabreliner	75A	
Sabreliner	80	
Sabreliner	T-39	

Appendix B—Water and Sewer Master Plans

